Your single point of reference for all your Geotechnical Inquiries
SPATIAL PREDICTION MODELS FOR LANDSLIDE HAZARDS: REVIEW, COMPARISON AND EVALUATION (2005)
The predictive power of logistic regression, support vector machines and bootstrap-aggregated classification trees (bagging, double-bagging) is compared using misclassification error rates on independent test data sets. Based on a resampling approach that takes into account spatial autocorrelation, error rates for predicting “present” and “future” landslides are estimated within and outside the training area. In a case study from the Ecuadorian Andes, logistic regression with stepwise backward variable selection yields lowest error rates and demonstrates the best generalization capabilities. The evaluation outside the training area reveals that tree-based methods tend to overfit the data.
Reference:
Natural Hazards and Earth System Sciences, 5, 853–862, 2005
Natural Hazards and Earth System Sciences, 5, 853–862, 2005
Organization:
Institute of Medical Informatics, Biometry and Epidemiology, University of Erlangen-Nurnberg, Erlangen, Germany
Institute of Medical Informatics, Biometry and Epidemiology, University of Erlangen-Nurnberg, Erlangen, Germany
User Rating:
You must be registered to vote.